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Central schemes offer a simple and versatile approach for computing
approximate solutions of non-linear systems of hyperbolic conservation laws
and related PDEs. The solution of such problems often involves the sponta-
neous evolution of steep gradients. The multiscale aspect of these gradients
poses a main computational challenge for their numerical solution. Central
schemes utilize a minimal amount of information on the propagation speeds
associated with the problems, in order to accurately detect these steep gra-
dients. This information is then coupled with high-order, non-oscillatory
reconstruction of the approximate solution in ‘the direction of smoothness’:
that is, information of smoothness does not cross regions of steep gradients.
The use of central stencils enables us to realize the reconstructed solutions
through simple quadratures. In this manner, central schemes avoid the
intricate and time-consuming details of the eigen-structure of the under-
lying PDEs, and in particular, the use of (approximate) Riemann solvers,
dimensional splitting, etc. The resulting family of central schemes offers
relatively simple, “black-box” solvers for a wide variety of problems gov-
erned by multi-dimensional systems of non-linear hyperbolic conservation
laws and related convection-diffusion problems.

We highlight several features of this new class of central schemes.
Scalar equations. Both the second- and third-order schemes were shown
to have variation bounds, which in turn yield convergence with precise
error estimates, as well as entropy and (multidimensional) L∞-stability
estimates. Systems of equations. Extension to systems is carried out
by component-wise application of the scalar framework. It is in this con-
text that our central schemes offer a remarkable advantage over the corre-
sponding upwind framework. Multidimensional problems. Since we by-
pass the need for (approximate) Riemann solvers, multidimensional prob-
lems are solved without dimensional splitting. In fact, the class of central
schemes is utilized for a variety of nonlinear transport equations. A partial
list of more than 120 references can be found in CentPack, [4]. CentPack
is a collection of freely distributed C++ routines that implement a num-
ber of high-order, non-oscillatory central schemes for hyperbolic systems of
conservation laws in one- and two-space dimensions, ut+f(u)x+g(u)y = 0.
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The numerical algorithm for the implementation of central schemes consists
of two main steps: (i) a non-oscillatory piecewise polynomial reconstruc-
tion of point values from their cell averages; followed by (ii) time evolution
of the reconstructed polynomial, which is governed by the flux functions
f(·) and g(·).

The efficiency and versatility of central schemes resides, mainly, in
their simplicity: they eliminate the need for Riemann solvers and avoid di-
mensional splitting, yielding a generic formulation valid for any hyperbolic
system that can be written in the above form. Only information specific
to the model and problem to be solved needs to be provided; namely, a
description of the flux functions, f(u) and g(u), the maximal propagation
speed, and the appropriate initial and boundary conditions.

1. Introduction. In recent years, central schemes for approximating
solutions of hyperbolic conservation laws, received a considerable amount
of renewed attention. A family of high-resolution, non-oscillatory, cen-
tral schemes, was developed to handle such problems. Compared with
the ’classical’ upwind schemes, these central schemes were shown to be
both simple and stable for a large variety of problems ranging from one-
dimensional scalar problems to multi-dimensional systems of conservation
laws. They were successfully implemented for a variety of other related
problems, such as, e.g., the incompressible Euler equations [30], [24], [22],
[23], the magneto-hydrodynamics equations [5], viscoelastic flows—[22] hy-
perbolic systems with relaxation source terms [6], [43], [1] non-linear optics,
[10], traffic flow [26], and a host of other applications listed on the “central-
station” site, http://www.cscamm.umd.edu/centpack/publications/.

The family of high-order central schemes we deal with, can be viewed
as a direct extension to the first-order, Lax-Friedrichs (LxF) scheme [12],
which on one hand is robust and stable, but on the other hand suffers
from excessive dissipation. To address this problematic property of the
LxF scheme, a Godunov-like second-order central scheme was developed
by Nessyahu and Tadmor (NT) in [38] (see also [45]). It was extended to
higher-order of accuracy as well as for more space dimensions (consult [2],
[19], [3] and [23], for the two-dimensional case, and [44], [17], [34] for the
third-order schemes).

The NT scheme is based on reconstructing, in each time step, a
piecewise-polynomial interpolant from the cell-averages computed in the
previous time step. This interpolant is then (exactly) evolved in time, and
finally, it is projected on its staggered averages, resulting with the stag-
gered cell-averages at the next time-step. The one- and two-dimensional
second-order schemes, are based on a piecewise-linear MUSCL-type recon-
struction, whereas the third-order schemes are based on the non-oscillatory
piecewise-parabolic reconstruction [33], [34]. Higher orders schemes are
treated in [7], [28], [29]. Schemes base on staggered stencils, such as the
NT scheme, are necessarily redundant. The use of redundant stencils was
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extended to multi-dimensional overlapping cells, and as an example, we
mention in this context the recent works on central discontinuous Galerkin
methods, [35], [36], [37].

Like upwind schemes, the reconstructed piecewise-polynomials used
by the central schemes, also make use of non-linear limiters which guar-
antee the overall non-oscillatory nature of the approximate solution. But
unlike the upwind schemes, central schemes avoid the intricate and time
consuming Riemann solvers; this advantage is particularly important in the
multi-dimensional setup, where no such Riemann solvers are available.

2. A short guide to Godunov-type schemes. We want to solve
the hyperbolic system of conservation laws

ut + f(u)x = 0 (2.1)

by Godunov-type schemes. To this end we proceed in two steps. First,
we introduce a small spatial scale, ∆x, and we consider the corresponding
(Steklov) sliding average of u(·, t),

ū(x, t) :=
1

|Ix|

∫

Ix

u(ξ, t)dξ, Ix =

{

ξ





|ξ − x| ≤ ∆x

2

}

.

The sliding average of (2.1) then yields

ūt(x, t) +
1

∆x

[

f(u(x +
∆x

2
, t)) − f(u(x − ∆x

2
, t))

]

= 0. (2.2)

Next, we introduce a small time-step, ∆t, and integrate over the slab t ≤
τ ≤ t + ∆t,

ū(x, t + ∆t) = ū(x, t)
(2.3)

− 1

∆x

[

∫ t+∆t

τ=t

f(u(x +
∆x

2
, τ))dτ −

∫ t+∆t

τ=t

f(u(x − ∆x

2
, τ))dτ

]

.

We end up with an equivalent reformulation of the conservation law (2.1):
it expresses the precise relation between the sliding averages, ū(·, t), and
their underlying pointvalues, u(·, t). We shall use this reformulation, (2.3),
as the starting point for the construction of Godunov-type schemes.

We construct an approximate solution, w(·, tn), at the discrete time-
levels, tn = n∆t. Here, w(x, tn) is a piecewise polynomial written in the
form

w(x, tn) =
∑

pj(x)χj(x), χj(x) := 1Ij
,

where pj(x) are algebraic polynomials supported at the discrete cells, Ij =
Ixj

, centered around the midpoints, xj := j∆x. An exact evolution of
w(·, tn) based on (2.3), reads
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w̄(x, tn+1) = w̄(x, tn)
(2.4)

− 1

∆x

[

∫ tn+1

tn

f(w(x +
∆x

2
, τ))dτ −

∫ tn+1

tn

f(w(x − ∆x

2
, τ))dτ

]

.

To construct a Godunov-type scheme, we realize (2.4) — or at least an
accurate approximation of it, at discrete gridpoints. Here, we distinguish
between the main methods, according to their way of sampling (2.4): these
two main sampling methods correspond to upwind schemes and central
schemes.

2.1. Upwind schemes. Let w̄n
j abbreviates the cell averages, w̄n

j :=
1

∆x

∫

Ij
w(ξ, tn)dξ. By sampling (2.4) at the mid-cells, x = xj , we obtain an

evolution scheme for these averages, which reads

w̄n+1
j = w̄n

j − 1

∆x

[

∫ tn+1

τ=tn

f(w(xj+ 1
2
, τ))dτ −

∫ tn+1

τ=tn

f(w(xj− 1
2
, τ))dτ

]

. (2.5)

Here, it remains to recover the pointvalues, {w(xj+ 1
2
, τ)}j , tn ≤ τ ≤ tn+1,

in terms of their known cell averages, {w̄n
j }j , and to this end we proceed

in two steps:
• First, the reconstruction – we recover the pointwise values of w(·, τ)

at τ = tn, by a reconstruction of a piecewise polynomial approxi-
mation

w(x, tn) =
∑

j

pj(x)χj(x), p̄j(xj) = w̄n
j . (2.6)

• Second, the evolution — w(xj+ 1
2
, τ ≥ tn) are determined as the

solutions of the generalized Riemann problems

wt + f(w)x = 0, t ≥ tn; w(x, tn) =

{

pj(x) x < xj+ 1
2
,

pj+1(x) x > xj+ 1
2
.

(2.7)

The solution of (2.7) is composed of a family of nonlinear waves – left-going
and right-going waves. An exact Riemann solver, or at least an approximate
one is used to distribute these nonlinear waves between the two neighboring
cells, Ij and Ij+1. It is this distribution of waves according to their direction
which is responsible for upwind differencing, consult Figure 2.1. We briefly
recall few canonical examples for this category of upwind Godunov-type
schemes.

The original Godunov scheme is based on piecewise-constant recon-
struction, w(x, tn) = Σw̄n

j χj , followed by an exact Riemann solver. This
results in a first-order accurate upwind method [14], which is the forerun-
ner for all other Godunov-type schemes. A second-order extension was
introduced by van Leer [21]: his MUSCL scheme reconstructs a piece-
wise linear approximation, w(x, tn) = Σpj(x)χj(x), with linear pieces of
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Fig. 1. Upwind differencing by Godunov-type scheme.

the form pj(x) = w̄n
j + w′

j

(

x−xj

∆x

)

so that p̄j(xj) = w̄n
j . Here the w′

j-s

are possibly limited slopes which are reconstructed from the known cell-
averages, w′

j = {(wn
j )′} = {w′(w̄n

k )j+1
k=j−1}. (Throughout this lecture we

use primes, w′
j , w

′′
j , . . ., to denote discrete derivatives, which approximate

the corresponding differential ones). A whole library of limiters is avail-
able in this context, so that the co-monotonicity of w(x, tn) with Σw̄jχj is
guaranteed, e.g., [46]. The Piecewise-Parabolic Method (PPM) of Colella-
Woodward [9] and respectively, ENO schemes of Harten et.al. [16], offer,
respectively, third- and higher-order Godunov-type upwind schemes. (A
detailed account of ENO schemes can be found in lectures of C.W. Shu in
this volume). Finally, we should not give the impression that limiters are
used exclusively in conjunction with Godunov-type schemes. The positive
schemes of Liu and Lax, [32], offer simple and fast upwind schemes for
multidimensional systems, based on an alternative positivity principle.

2.2. Central schemes. As before, we seek a piecewise-polynomial,
w(x, tn) = Σpj(x)χj(x), which serves as an approximate solution to the
exact evolution of sliding averages in (2.4),

w̄(x, tn+1) = w̄(x, tn)
(2.8)

− 1

∆x

[

∫ tn+1

tn

f(w(x +
∆x

2
, τ))dτ −

∫ tn+1

tn

f(w(x − ∆x

2
, τ))dτ

]

.

Note that the polynomial pieces of w(x, tn) are supported in the cells,

Ij =
{

ξ





|ξ − xj | ≤ ∆x

2

}

, with interfacing breakpoints at the half-integers

gridpoints, xj+ 1
2

=
(

j + 1
2

)

∆x.



6 EITAN TADMOR

We recall that upwind schemes (2.5) were based on sampling (2.4) in
the midcells, x = xj . In contrast, central schemes are based on sampling
(2.8) at the interfacing breakpoints, x = xj+ 1

2
, which yields

w̄n+1
j+ 1

2

= w̄n
j+ 1

2

− 1

∆x

[

∫ tn+1

τ=tn

f(w(xj+1 , τ))dτ −
∫ tn+1

τ=tn

f(w(xj , τ))dτ

]

. (2.9)

We want to utilize (2.9) in terms of the known cell averages at time level
τ = tn, {w̄n

j }j . The remaining task is therefore to recover the pointvalues

{w(·, τ)| tn ≤ τ ≤ tn+1}, and in particular, the staggered averages, {w̄n
j+ 1

2

}.
As before, this task is accomplished in two main steps:

• First, we use the given cell averages {w̄n
j }j , to reconstruct the

pointvalues of w(·, τ = tn) as piecewise polynomial approximation

w(x, tn) =
∑

j

pj(x)χj(x), p̄j(xj) = w̄n
j . (2.10)

In particular, the staggered averages on the right of (2.9) are given
by

w̄n
j+ 1

2

=
1

∆x





∫ x
j+ 1

2

xj

pj(x)dx +

∫ xj+1

x
j+ 1

2

pj+1(x)dx



 . (2.11)

The resulting central scheme (2.9) then reads

w̄n+1
j+ 1

2

=
1

∆x





∫ x
j+ 1

2

xj

pj(x)dx +

∫ xj+1

x
j+ 1

2

pj+1(x)dx



 + (2.12)

− 1

∆x

[

∫ tn+1

τ=tn

f(w(xj+1, τ))dτ −
∫ tn+1

τ=tn

f(w(xj , τ))dτ

]

.

• Second, we follow the evolution of the pointvalues along the mid-
cells, x = xj , {w(xj , τ ≥ tn)}j , which are governed by

wt + f(w)x = 0, τ ≥ tn; w(x, tn) = pj(x) x ∈ Ij . (2.13)

Let {ak(u)}k denote the eigenvalues of the Jacobian A(u) := ∂f
∂u

.
By hyperbolicity, information regarding the interfacing discontinu-
ities at (xj± 1

2
, tn) propagates no faster than max

k
|ak(u)|. Hence,

the mid-cells values governed by (2.13), {w(xj , τ ≥ tn)}j , re-
main free of discontinuities, at least for sufficiently small time
step dictated by the CFL condition ∆t ≤ 1

2∆x · max
k

|ak(u)|.
Consequently, since the numerical fluxes on the right of (2.12),
∫ tn+1

τ=tn f(w(xj , τ))dτ , involve only smooth integrands, they can be
computed within any degree of desired accuracy by an appropriate
quadrature rule.
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Fig. 2. Central differencing by Godunov-type scheme.

It is the staggered averaging over the fan of left-going and right-going
waves centered at the half-integered interfaces, (xj+ 1

2
, tn), which charac-

terizes the central differencing, consult Figure 2.2. A main feature of these
central schemes – in contrast to upwind ones, is the computation of smooth
numerical fluxes along the mid-cells, (x = xj , τ ≥ tn), which avoids the
costly (approximate) Riemann solvers. A couple of examples of central
Godunov-type schemes is in order.

The first-order Lax-Friedrichs (LxF) approximation is the forerunner
for such central schemes — it is based on piecewise constant reconstruction,
w(x, tn) = Σpj(x)χj(x) with pj(x) = w̄n

j . The resulting central scheme,

(2.12), then reads (with the usual fixed mesh ratio λ := ∆t
∆x

)

w̄n+1
j+ 1

2

=
1

2
(w̄j + w̄j+1) − λ

[

f(w̄j+1) − f(w̄j)
]

. (2.14)

Our main focus in the rest of this chapter is on non-oscillatory higher-order
extensions of the LxF schemes.

3. Central schemes in one-space dimension.

3.1. The second-order Nessyahu-Tadmor scheme. In this sec-
tion we overview the construction of high-resolution central schemes in
one-space dimension. We begin with the reconstruction of the second-order,
non-oscillatory Nessyahu and Tadmor (NT) scheme, [38]. To approximate
solutions of (2.1), we introduce a piecewise-linear approximate solution at
the discrete time levels, tn = n∆t, based on linear functions pj(x, tn) which
are supported at the cells Ij (see Figure 3),
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Fig. 3. The second-order reconstruction.

w(x, t)|t=tn =
∑

j

pj(x, tn)χj(x) :=
∑

j

[

w̄n
j + w′

j

(

x − xj

∆x

)]

χj(x),

(3.1)
χj(x) := 1Ij

.

Second-order of accuracy is guaranteed if the discrete slopes approxi-
mate the corresponding derivatives, w′

j ∼ ∆x·∂xw(xj , t
n)+O(∆x)2 . At the

same time, the second-order reconstruction is sought to be non-oscillatory
in a manner which is properly quantified in terms of a maximum principle,
total variation bound etc. To maintain both – second-order accuracy and
the non-oscillatory character of the reconstruction, one may choose from a
large class of nonlinear limiters, e.g., [21], [15], [46], [33]. We mention here
the canonical class of limiters of the form

w′
j = MM{θ(w̄n

j+1 − w̄n
j ),

1

2
(w̄n

j+1 − w̄n
j−1), θ(w̄

n
j − w̄n

j−1)}. (3.2)

Here and below, θ ∈ [1, 2] is a free parameter which limits the maximal
reconstructed slope, and MM denotes the so-called min-mod function

MM{x1, x2, ...} =







mini{xi} if xi > 0, ∀i
maxi{xi} if xi < 0, ∀i
0 otherwise.

An exact evolution of w, based on integration of the conservation law
over the staggered cell, Ij+ 1

2
, then reads, (2.9)

w̄n+1
j+ 1

2

=
1

∆x

∫

I
j+ 1

2

w(x, tn)dx− 1

∆x

∫ tn+1

τ=tn

[f(w(xj+1 , τ)) − f(w(xj , τ))] dτ.

The first integral is the staggered cell-average at time tn, w̄n
j+ 1

2

, which can

be computed directly from the above reconstruction,

w̄n
j+ 1

2

:=
1

∆x

∫ xn+1

xj

w(x, tn)dx =
1

2
(w̄n

j + w̄n
j+1) +

1

8
(w′

j − w′
j+1). (3.3)
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The time integrals of the flux are computed by the second-order accurate
mid-point quadrature rule

∫ tn+1

τ=tn

f(w(xj , τ))dτ ∼ ∆t · f(w(xj , t
n+ 1

2 )).

Here, the Taylor expansion is being used to predict the required mid-values
of w

w(xj , t
n+ 1

2 ) ∼ w(xj , t) +
∆t

2
wt(xj , t

n)

= w̄n
j − ∆t

2
A(w̄n

j )(pj(xj , t
n))x = w̄n

j − λ

2
An

j w′
j .

In summary, we end up with the central scheme, [38], which consists
of a first-order predictor step,

w
n+ 1

2

j = w̄n
j − λ

2
An

j w′
j , An

j := A(w̄n
j ), (3.4)

followed by the second-order corrector step, (2.12),

w̄n+1
j+ 1

2

=
1

2
(w̄n

j + w̄n
j+1) +

1

8
(w′

j − w′
j+1) − λ

[

f(w
n+ 1

2

j+1 ) − f(w
n+ 1

2

j )
]

. (3.5)

The scalar non-oscillatory properties of (3.4)–(3.5) were proved in [38],
including the TVD property, cell entropy inequality, L1

loc− error estimates,
etc. Moreover, the numerical experiments, reported in [38], [3], [5], [43],
[1], [7], with one-dimensional systems of conservation laws, show that such
second-order central schemes enjoy the same high-resolution as the cor-
responding second-order upwind schemes do. The main difference lies in
the resolution of linear contact waves, where upwind differencing in the
characteristic eigen-directions yields improved resolution; but see [25], [31]
for example of enhancing the resolution of contact discontinuities in cen-
tral schemes. Thus, the excessive smearing typical to the first-order LxF
central scheme is compensated here by the second-order accurate MUSCL
reconstruction.

In Figure 4 we compare, side by side, the upwind ULT scheme of
Harten, [15], with our central scheme (3.4)–(3.5). The comparable high-
resolution of this so called Lax’s Riemann problem is evident.

At the same time, the central scheme (3.4)–(3.5) has the advantage
over the corresponding upwind schemes, in that no (approximate) Riemann
solvers, as in (2.7), are required. Hence, these Riemann-free central schemes
provide an efficient high-resolution alternative in the one-dimensional case,
and a particularly advantageous framework for multidimensional compu-
tations, e.g., [3], [19]. This advantage in the multidimensional case will
be explored in the next section. Also, staggered central differencing, along
the lines of the Riemann-free Nessyahu-Tadmor scheme (3.4)–(3.5), admits
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Fig. 4. 2nd order: central (STG) vs. upwind (ULT) — Lax’s Riemann problem.
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simple efficient extensions in the presence of general source terms, [11], [40]
and in particular, stiff source terms. Indeed, it is a key ingredient behind
the relaxation schemes studied in [20].

It should be noted, however, that the component-wise version of these
central schemes might result in deterioration of resolution at the com-
puted extrema. The second-order computation presented in Figure 5 below
demonstrates this point. (this will be corrected by higher order central
methods). Of course, this – so called extrema clipping, is typical to high-
resolution upwind schemes as well; but it is more pronounced with our
central schemes due to the built-in extrema-switching to the dissipative
LxF scheme. Indeed, once an extrema cell, Ij , is detected (by the lim-
iter), it sets a zero slope, w′

j = 0, in which case the second-order scheme
(3.4)–(3.5) is reduced back to the first-order LxF, (2.14).

3.2. The third-order central scheme. Following the framework
outlined in §3.1, the upgrade to third-order central scheme consists of two
main ingredients:

(i) A third-order accurate, piecewise-quadratic polynomial reconstruction
which enjoys desirable non-oscillatory properties;

(ii) An appropriate quadrature rule to approximate the numerical fluxes
along cells’ interfaces.

Following [34], we proceed as follows. The piecewise-parabolic recon-
struction takes the form

pj(x) = wn
j + w′

j

(

x − xj

∆x

)

+
1

2
w′′

j

(

x − xj

∆x

)2

. (3.6)

Here, w′′
j are the (pointvalues of) the reconstructed second derivatives

w′′
j := θj∆+∆−w̄n

j ; (3.7)

w′
j are the (pointvalues of) the reconstructed slopes,

w′
j := θj∆0w̄

n
j ; (3.8)

and wn
j are the reconstructed pointvalues

wn
j := w̄n

j −
w′′

j

24
. (3.9)

Observe that, starting with third- (and higher-) order accurate methods,
pointwise values cannot be interchanged with cell averages, wn

j 6= w̄n
j .

Here, θj are appropriate nonlinear limiters which guarantee the non-
oscillatory behavior of the third-order reconstruction; its precise form can
be found in [33], [34]. They guarantee that the reconstruction (3.6) is
non-oscillatory in the sense that N(w(·, tn)) — the number of extrema
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of w(x, tn), does not exceed that of its piecewise-constant projection,
N(Σw̄n

j χj(·)),

N(w(·, tn)) ≤ N(Σw̄n
j χj(·)). (3.10)

Next we turn to the evolution of the piecewise-parabolic reconstructed
solution. To this end we need to evaluate the staggered averages, {w̄n

j+ 1
2

},

and to approximate the interface fluxes,
{

∫ tn+1

τ=tn f(w(xj , τ))dτ
}

.

With pj(x) = wn
j + w′

j

(

x−xj

∆x

)

+ 1
2w′′

j

(

x−xj

∆x

)2

specified in (3.6)–

(3.9), one evaluates the staggered averages of the third order reconstruction
w(x, tn) = Σpj(x) χj(x)

w̄n
j+ 1

2

=
1

∆x

∫ xj+1

xj

w(x, tn)dx =
1

2
(w̄j + w̄j+1) +

1

8
(w′

j − w′
j+1). (3.11)

Remarkably, we obtain here the same formula for the staggered averages
as in the second-order cases, consult (3.3); the only difference is the use of
the new limited slopes in (3.8), w′

j = θj∆0w̄
n
j .

Next, we approximate the (exact) numerical fluxes by Simpson’s
quadrature rule, which is (more than) sufficient for retaining the overall
third-order accuracy,

1

∆x

∫ tn+1

τ=tn

f(w(xj , τ))dτ ∼ λ

6

[

f(wn
j ) + 4f(w

n+ 1
2

j ) + f(wn+1
j )

]

. (3.12)

This in turn, requires the three approximate pointvalues on the right,
wn+β

j ∼ w(xj , t
n+β) for β = 0, 1

2 , 1. Following our approach in the second-
order case, [38], we use Taylor expansion to predict

wn
j = w̄n

j −
w′′

j

24
; (3.13)

ẇn
j ≡ (∆x · ∂t)w(xj , t

n) = −∆x · ∂xf(w(xj , t
n))

(3.14)
= −a(wn

j ) · w′
j , ;

ẅn
j ≡ (∆x · ∂t)

2w(xj , t
n)= ∆x · ∂x

[

a(wn
j )∆x · ∂xf(w(xj , t

n))
]

(3.15)
= a2(wn

j )w′′
j + 2a(wn

j )a′(wn
j )(w′

j)
2.

In summary of the scalar setup, we end up with a two step scheme
where, starting with the reconstructed pointvalues

wn
j = w̄n

j −
w′′

j

24
, (3.16)
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we predict the pointvalues wn+β
j by, e.g. Taylor expansions,

wn+β
j = wn

j + λβẇn
j +

(λβ)2

2
ẅn

j , β =
1

2
, 1; (3.17)

this is followed by the corrector step

w̄n
j+ 1

2

=
1

2
(w̄n

j + w̄n
j+1) +

1

8
(w′

j − w′
j+1)

−λ

6

{[

f(wn
j+1) + 4f(w

n+ 1
2

j+1 ) + f(wn+1
j+1 )

]

(3.18)

−
[

f(wn
j ) + 4f(w

n+ 1
2

j ) + f(wn+1
j )

]}

.

In Figure 5 we revisit the so called Woodward-Colella problem, [49],
where we compare the second vs. the third-order results. The improvement
in resolving the density field is evident.

We conclude this section with several remarks.
Remark.

1. Stability.
We briefly mention the stability results for the scalar central
schemes. In the second order case, the NT scheme was shown
to be both TVD and entropy stable in the sense of satisfying a
cell entropy inequality – consult [38]. The third-order scalar cen-
tral scheme is stable in the sense of satisfying the NED property,
(3.10), namely
Theorem 3.1 ([34]). Consider the central scheme (3.16), (3.17),
(3.18), based on the third-order accurate quadratic reconstruction,
(3.6)–(3.9). Then it satisfies the so-called Number of Extrema Di-
minishing (NED) property, in the sense that

N

(

∑

ν

w̄n+1
v+ 1

2

χν+ 1
2
(x)

)

≤ N

(

∑

ν

w̄n
ν χν(x)

)

. (3.19)

2. Source terms, radial coordinates, ...
Extensions of the central framework which deal with both, stiff
and non-stiff source terms can be found in [43], [1], [11], [6]. In
particular, Kupferman in [22], [23] developed the central frame-
work within the radial coordinates which require to handle both –
variable coefficients + source terms.

3. Higher order central schemes.
We refer to [7], where a high-order ENO reconstruction is realized
by a staggered cell averaging. Here, intricate Riemann solvers are
replaced by high order quadrature rules. and for this purpose,
one can effectively use the RK method (rather than the Taylor
expansion outlined above):
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Fig. 5. 3rd vs. 2nd order central schemes — Woodward-Colella problem at t = 0.03.

4. Taylor vs. Runge-Kutta.
The evaluations of Taylor expansions could be substituted by the
more economical Runge-Kutta integrations; the simplicity becomes
more pronounced with systems. A particular useful approach in
this context was proposed in [7], [28], [29] using the natural con-
tinuous extensions of RK schemes.
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5. Systems.
One of the main advantages of our central-staggered framework
over that of the upwind schemes, is that expensive and time-
consuming characteristic decompositions can be avoided. Specifi-
cally, all the non-oscillatory computations can be carried out with
diagonal limiters, based on a component-wise extension of the
scalar limiters outlined above.

4. Central schemes in two space dimensions. Following the one
dimensional setup, one can derive a non-oscillatory, two-dimensional cen-
tral scheme. Here we sketch the construction of the second-order two-
dimensional scheme following [19] (see also [2]). For the two-dimensional
third-order accurate scheme, we refer to [28].

We consider the two-dimensional hyperbolic system of conservation
laws

ut + f(u)x + g(u)y = 0. (4.1)

To approximate a solution to (4.1), we start with a two-dimensional linear
reconstruction

w(x, y, tn) =
∑

j,k

pj,k(x, y)χj,k(x, y),

(4.2)

pj,k(x, y) = w̄n
j,k + w′

j,k

(

x − xj

∆x

)

+ w8

j,k

(

y − yk

∆y

)

.

Here, the discrete slopes in the x and in the y direction approximate the
corresponding derivatives, w′

j,k ∼ ∆x · wx(xj , yk, tn) + O(∆x)2, w8

j,k ∼
∆y ·wy(xj , yk, tn)+O(∆y)2, and χj,k(x, y) is the characteristic function of

the cell Cj,k :=
{

(ξ, η)
∣

∣|ξ − xj | ≤ ∆x
2 , |η − yk| ≤ ∆y

2

}

= Ij ⊗ Jk. Of course,

it is essential to reconstruct the discrete slopes, w′ and w8, with limiters,
which guarantee the non-oscillatory character of the reconstruction; the
family of min-mod limiters is a prototype example

w′
jk = MM{θ(w̄n

j+1,k − w̄n
j,k),

1

2
(w̄n

j+1,k − w̄n
j−1,k), θ(w̄n

j,k − w̄n
j−1,k)},

(4.3′)
1 ≤ θ ≤ 2,

w8

jk = MM{θ(w̄n
j,k+1 − w̄n

j,k),
1

2
(w̄n

j,k+1 − w̄n
j,k−1), θ(w̄

n
j,k − w̄n

j,k−1)},
(4.38)

1 ≤ θ ≤ 2.

An exact evolution of this reconstruction, which is based on integration
of the conservation law over the staggered volume yields
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Fig. 6. Floor plan of the staggered grid.

w̄n+1
j+ 1

2
,k+ 1

2

= −
∫

C
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy (4.4)

− λ







−
∫ tn+1

τ=tn

−
∫

y∈J
k+1

2

[f(w(xj+1 , y, τ)) − f(w(xj , y, τ))] dydτ







− µ







−
∫ tn+1

τ=tn

−
∫

x∈I
j+ 1

2

[g(w(x, yk+1, τ)) − g(w(x, yk, τ))] dxdτ







.

Here and below, −
∫

denotes the normalized integral, −
∫

Ω

:=
1

|Ω|

∫

Ω

.

The exact averages at tn – consult the floor plan in Figure 6 yields

w̄n
j+ 1

2
,k+ 1

2

:= −
∫

C
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy (4.5)

=
1

4
(w̄n

jk + w̄n
j+1,k + w̄n

j,k+1 + w̄n
j+1,k+1)

+
1

16

{

(w′
jk − w′

j+1,k) + (w′
j,k+1 − w′

j+1,k+1)

+(w8

jk − w8

j,k+1) + (w8

j+1,k − w8

j+1,k+1)
}

.

So far everything is exact. We now turn to approximate the four
fluxes on the right of (4.4), starting with the one along the East face,

consult Figure 7, −
∫ tn+1

tn

−
∫

J
k+1

2

f(w(xj+1, y, τ))dydτ . We use the midpoint
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Fig. 7. The staggered stencil in two dimensions.

quadrature rule for second-order approximation of the temporal integral,
−
∫

y∈J
k+1

2

f(w(xj+1, y, tn+ 1
2 ))dy; and, for reasons to be clarified below, we

use the second-order rectangular quadrature rule for the spatial integra-
tion across the y-axis, yielding

−
∫ tn+1

tn

−
∫

y∈J
k+1

2

f(w(xj+1, y, τ))dydτ ∼ 1

2

[

f(w
n+ 1

2

j+1,k) + f(w
n+ 1

2

j+1,k+1)
]

. (4.6)

In a similar manner we approximate the remaining fluxes.

These approximate fluxes make use of the midpoint values, w
n+ 1

2

jk ≡
w(xj , yk, tn+ 1

2 ), and it is here that we take advantage of utilizing these
midvalues for the spatial integration by the rectangular rule. Namely,
since these midvalues are secured at the smooth center of their cells, Cjk,
bounded away from the jump discontinuities along the edges, we may use
Taylor expansion, w(xj , yk, tn+ 1

2 ) = w̄n
jk + ∆t

2 wt(xj , yk, tn) + O(∆t)2. Fi-
nally, we use the conservation law (4.1) to express the time derivative, wt,
in terms of the spatial derivatives, f(w)′ and g(w)8,

w
n+ 1

2

jk = w̄n
jk − λ

2
f(w)′jk − µ

2
g(w)8

jk . (4.7)

Here, f(w)′jk ∼ ∆x · f(w(xj , yk, tn))x and g(w)8

jk ∼ ∆y · g(w(xj , yk, tn))y ,
are one-dimensional discrete slopes in the x- and y-directions, of the type
reconstructed in (4.3′)–(4.38); for example, multiplication by the corre-
sponding Jacobians A and B yields
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f(w)′jk = A(w̄n
jk)w′

jk, g(w)8

jk = B(w̄n
jk)w8

jk.

Equipped with the midvalues (4.7), we can now evaluate the approximate
fluxes, e,g., (4.6). Inserting these values, together with the staggered aver-
age computed in (4.6), into (4.4), we conclude with new staggered averages
at t = tn+1, given by

w̄n+1
j+ 1

2
,k+ 1

2

=
1

4
(w̄n

jk + w̄n
j+1,k + w̄n

j,k+1 + w̄n
j+1,k+1) (4.8)

+
1

16
(w′

jk − w′
j+1,k) − λ

2

[

f(w
n+ 1

2

j+1,k) − f(w
n+ 1

2

j,k )
]

+
1

16
(w′

j,k+1 − w′
j+1,k+1) −

λ

2

[

f(w
n+ 1

2

j+1,k+1) − f(w
n+ 1

2

j,k+1)
]

+
1

16
(w8

jk − w8

j,k+1) −
µ

2

[

g(w
n+ 1

2

j,k+1) − g(w
n+ 1

2

j,k )
]

+
1

16
(w8

j+1,k − w8

j+1,k+1) −
µ

2

[

g(w
n+ 1

2

j+1,k+1) − g(w
n+ 1

2

j+1,k)
]

.

In summary, we end up with a simple two-step predictor-corrector
scheme which could be conveniently expressed in terms on the one-
dimensional staggered averaging notations

〈wj,.〉k+ 1
2

:=
1

2
(wj,k + wj,k+1), 〈w.,k〉j+ 1

2
:=

1

2
(wj,k + wj+1,k).

Our scheme consists of a predictor step

w
n+ 1

2

j,k = wn
j,k − λ

2
f ′

j,k − µ

2
g8

j,k, (4.9)

followed by the corrector step

w̄n+1
j+ 1

2
,k+ 1

2

= 〈1
4
(w̄n

j,. + w̄n
j+1,.) +

1

8
(w′

j,.− w′
j+1,.) − λ(f

n+ 1
2

j+1,·− f
n+ 1

2

j,· )〉k+ 1
2

+ 〈1
4
(w̄n

.,k + w̄n
.,k+1) +

1

8
(w8

.,k− w8

.,k+1)− µ(g
n+ 1

2

·,k+1 − g
n+ 1

2

·,k )〉j+ 1
2
.

In Figures 8 taken from [19], we present the two-dimensional computa-
tion of a double-Mach reflection problem; in Figure 9 we quote from [5] the
two-dimensional computation of MHD solution of Kelvin-Helmholtz insta-
bility due to shear flow. The computations are based on our second-order
central scheme. It is remarkable that such a simple ’two-lines’ algorithm,
with no characteristic decompositions and no dimensional splitting, ap-
proximates the rather complicated double Mach reflection problem with
such high resolution. Couple of remarks are in order.

• Two-dimensional computations using central schemes are sensitive
to the choice of limiter being used. In the context of the double
Mach reflection problem, for exmple, the MM2 (consult (3.2) with
θ = 2) seems to yield the sharper results. the one-dimensional
central scheme can be as sensitive as the 2D schemes.
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(a) 1 2

0.5

(b) 1 2

0.5

(c) 1 2

0.5

Fig. 8. Double Mach reflection problem computed with the central scheme using
MM2 limiter with CFL=0.475 at t = 0.2 (a) density computed with 480 × 120 cells (b)
density computed with 960 × 240 cells (c) x-velocity computed with 960 × 240 cells.

Fig. 9. Kelvin-Helmholtz instability due to shear flow. Transverse configuration
(B perpendicular to v). Pressure contours at t = 140.

• No effort was made to optimize the boundary treatment. The
staggered stencils require a different treatment for even-odd cells
intersecting with the boundaries. The lack of boundary resolution
could be observed at the bottom of the two Mach stems.

We conclude this section with brief remarks on further results related
to central schemes.
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Remark.

1. Simplicity.
Again, we would like to highlight the simplicity of the central
schemes, which is particularly evident in the multidimensional
setup: no characteristic information is required – in fact, even
the exact Jacobians of the fluxes are not required; also, since no
(approximate) Riemann solvers are involved, the central schemes
require no dimensional splitting; as an example we refer to the ap-
proximation of the incompressible equations by central schemes,
[24, 30]; the results in [10] provide another example of a weakly hy-
perbolic multidimensional system which could be efficiently solved
in term of central schemes, by avoiding dimensional splitting.

2. Non-staggering. We refer to [18] for a non-staggered version of the
central schemes.

3. Stability.
The following maximum principle holds for the nonoscillatory
scalar central schemes:
Theorem 4.1 ([19]). Consider the two-dimensional scalar scheme
(4.7–4.8), with minmod slopes, w′ and w8, in (4.3′–4.38)). Then
for any θ < 2 there exists a sufficiently small CFL number, Cθ (
– e.g. C1 = (

√
7 − 2)/6 ∼ 0.1), such that if the CFL condition is

fulfilled,

max(λ · max
u

|fu(u)|, µ · max
u

|gu(u)|) ≤ Cθ,

then the following local maximum principle holds

min
|p−(j+ 1

2
)|= 1

2

|q−(k+ 1
2
)|= 1

2

{w̄n
p,q} ≤ w̄n+1

j+ 1
2
,k+ 1

2

≤ max
|p−(j+ 1

2
)|= 1

2

|q−(k+ 1
2
)|= 1

2

{w̄n
p,q}. (4.10)
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